[The Thunderbolts Project, Japan Division]公式ブログ Takaaki Fukatsu’s blog

[The Thunderbolts Project,Japan Division] エレクトリックユニバース  電気的宇宙論、プラズマ宇宙物理学、 電気的観察物理学、解説、翻訳、 深津 孝明

The Balloon goes up over lightning!  風船が雷を越えて上昇します! by Wal Thornhill

The Balloon goes up over lightning! 
by Wal Thornhill | January 29, 2002 6:43 am


In August 2001 a high-altitude balloon was sent aloft to ride far above the great storms of the mid-west USA. 
2001 年 8 月、高高度気球が米国中西部の大嵐のはるか上空に飛ばされました。

Researchers had sent the balloon, like a Dark Rider out of Tolkien, riding into the moonless night, seeking sprites, gnomes and the ring of the elves.

<< Gnomes, sprites and elves stretch into space above powerful thunderstorms. Their fanciful names may reflect the fact that airline pilots reported them but for many years no one would believe them.
 << 強力な雷雨嵐の上で、ノーム、スプライト、エルフが宇宙に伸びています。 彼らの空想的な名前は、航空会社のパイロットが彼らを報告したという事実を反映しているかもしれませんが、長年にわたって誰も信じませんでした。

Surprisingly, in the 1920s, the Scottish physicist C. T. R. Wilson predicted the existence of brief flashes of light high above large thunderstorms. 
驚くべきことに、1920 年代にスコットランドの物理学者 C.T.R. ウィルソンは、大きな雷雨嵐の上空に短い閃光が存在することを予測しました。

Almost 70 years later, Bernard Vonnegut of SUNY Albany realized that evidence for Wilson’s then-unconfirmed predictions might appear in video imagery of Earth’s upper atmosphere, recorded by space shuttle astronauts. 

He encouraged NASA’s William Boeck and Otha Vaughan to look for evidence. 

Their search was successful. 

At the 1990 fall meeting of the American Geophysical Union, Boeck and Vaughan presented evidence for upper-atmosphere flashes. 
1990 年秋のアメリカ地球物理学連合の会合で、ベックとヴォーンは高層大気のフラッシュに関する証拠を発表しました。

Evidence of a different nature came from the University of Minnesota’s John Winckler and his colleagues, who had serendipitously observed a flash in moonless night skies over Minnesota in 1989.
異なる性質の証拠は、1989 年にミネソタ州上空の月のない夜空で偶然にも閃光を観察したミネソタ大学のジョン・ウィンクラーとその同僚から得られた。

[Edgar Bering. エドガー・ベーリング
Photo Credit: 
Bill Ashley, UH Media Center]

Few direct measurements have been made of the flashes, dubbed “sprites” by Davis Sentman of the University of Alaska Fairbanks. 

Sentman chose the name “sprites” for the red flashes because, like woodland elves, they can only be seen out of the corner of your eye. 

The thin air of the mesosphere where the sprites appear is too high for research aircraft to fly and too low for orbiting spacecraft to access, so most of what is known comes from low-light video cameras and electromagnetic sensors based in mountain-top labs. 

Prof. Edgar Bering, a physicist at the University of Houston in Texas, has recently changed that. 

He heads a team from NASA’s National Scientific Balloon Facility to study sprites by the tricky business of flying a high-altitude balloon above major thunderstorms.
彼は NASA の国立科学気球施設のチームを率いており、大規模な雷雨嵐の上で高高度気球を飛行させるという難しい作業によってスプライトを研究しています。


[Adapted from Rider on the Storm by Harriet Williams, New Scientist Vol. 172 No. 2321, 15 December 2001]
[ハリエット・ウィリアムズ著『Rider on the Storm』から翻案された『New Scientist Vol.  172 No.2321、2001 年 12 月 15 日』]

After more than a decade of disagreement, atmospheric physicists think they are finally close to agreeing on how sprites form. 

Bering’s balloon offers one of the first real chances to confirm their theories. 
ベーリングの気球は、彼らの理論を確認する最初の本当の機会の 1 つを提供します。

But it seems a storm is brewing that threatens to set Bering against his colleagues. 

What little information we have has led to a model of sprite formation that many in this close-knit community of investigators now agree on. 

It depends on intense but short-lived electric fields created in the atmosphere by lightning discharge.

[How a sprite is formed]

Although most lightning originates in the negative charges at the bottom of storm clouds, roughly 1 in every 5 lightning strikes originate in the positive charges near the cloud tops. 
ほとんどの雷は嵐の雲の底にあるマイナス電荷から発生しますが、落雷のおよそ 5 件に 1 件は雲の頂上近くのプラス電荷から発生します。

This results in an energetic positive cloud-to-ground discharge, in which the positive charge is neutralized by an upwards flow of electrons from the ground. 

The negative charges left in the lower part of the cloud set up what physicists call a “quasi-electrostatic field”- an intense electric field that extends high into the atmosphere above the storm.

“There is absolutely no question in my mind,” says Umran Inan, director of the Space, Telecommunications and Radioscience Lab at Stanford University. 
“Sprites are caused by QE fields.”

The sprite lies above horizontal (so-called spider) lightning in the lower portion of the upper stratiform cloud. 
スプライトは、上部層状雲の下部にある水平方向の (いわゆるスパイダー) 稲妻の上にあります。

The spider lightning’s large horizontal extent shows the size of the large layer of electric charge that feeds the positive ground flashes. 

Such lightning flashes are not generally seen in ordinary isolated thunderclouds.

Other unanswered questions remain. 

The extraordinarily rapid initial growth of sprites is not well understood. 

Nor is the pronounced asymmetry between the number of sprites produced by negative lightning and the number produced by positive lightning. 

Only two sprites have ever been clearly associated with flashes of negative cloud-to-ground lightning, whereas the number of sprites verifiably produced by more energetic positive cloud-to-ground lightning runs to thousands. 
これまでに、雲から地面に向かう負の雷の閃光と明確に関連付けられたスプライトは 2 つだけですが、よりエネルギーの高い雲から地面に向かう正の雷によって検証可能に生成されたスプライトの数は数千に達します。

Obviously, there is still much to learn.

The critical breakdown limit for air depends on its density. 

At very high altitudes-about 75 kilometres up-where air density is low, the QE field now exceeds the critical breakdown limit for air
空気密度が低い約 75 キロメートル上空の非常に高い高度では、QE フィールド(準静電場)が空気の臨界破壊限界を超えています。

Electrical breakdown occurs and molecules such as nitrogen and oxygen are ionised, releasing electrons. 

Under the influence of the QE field, free electrons are accelerated upwards, while positive ions accelerate down towards the ground.
QE 場(準静電場)の影響下で、自由電子は上向きに加速され、陽イオンは地面に向かって下向きに加速されます。

Edgar Bering’s balloon flights suggest that the currents responsible for sprites may carry far more oomph than anyone had suspected. 

Previous estimates suggested that the sprite-inducing current carries about 3000 amperes. Bering’s data, on the other hand, puts the figure nearer 12,000 amperes. 
以前の推定では、スプライトを誘導する電流が約 3000 アンペア流れることが示唆されていました。 一方、ベーリングのデータでは、この数字は 12,000 アンペアに近いとされています。

Whether this huge current could pose any direct physical danger to anyone is unknown. 

Airliners don’t fly in the mesosphere, but sprites can reach down into the cloud tops. 

And it is certainly possible that sprites could affect spacecraft, Bering suggests. 

Sprites are the prime suspect in the unexplained downing of a high-altitude balloon a few years ago.

Almost as quickly as it appears, the sprite fades away, disappearing completely in just a couple of milliseconds. 

However, the QE field is believed to last much longer. 
しかしながら、QE 場(準静電場)は、はるかに長く続くと考えられています。

Researchers on the ground can monitor its presence using radio receivers since the field produces a continuous electromagnetic signal at frequencies from a few hertz to tens of kilohertz. 

The signal often persists long after the sprite has disappeared, slowly fading as charges in the cloud disperse. 

This electromagnetic signal, Inan and his colleagues argue, is the signature of the QE field.
この電磁信号は QE 場(準静電場)の特徴である、とイナン氏らは主張する。

But what scientists needed were direct measurements of the electric field. 

What could be better than information gathered by a balloon flying high above the clouds?

The team scoured the balloon flight results for the signature of a QE field-the low-frequency radio hum. 
研究チームは、気球の飛行結果から QE フィールド(準静電場)の兆候 (低周波無線ハム音) を探しました。

But they were in for a surprise. 

The balloon’s instruments did not record it. 

The researchers realized the favoured model of sprite formation didn’t measure up.

The results from the ground stations suggest that once a positive lightning strike occurs, the intensity of the electric field in the mesosphere builds up over two or three milliseconds until breakdown occurs, and the sprite lights up. 
地上局からの結果は、一度正の落雷が発生すると、中間圏の電場の強度が 2 ~ 3 ミリ秒かけて増加し、破壊が発生してスプライトが点灯することを示唆しています。

This delay may be related to the flow of currents created by the lightning which bring the high-altitude electric field to the level required for breakdown, says Victor Pasko, an atmospheric physicist at Pennsylvania State University in University Park. 

Then, once the sprite has faded, charges in the clouds begin to disperse or flow away, and the electric field observed from the ground decays slowly over tens of milliseconds.

However, the balloon data paints a very different picture. 

It implies that sprites are produced by a sudden burst of current and there is no slow build-up of the electric field. 

Several milliseconds after the positive lightning strike, sensors recorded a sudden upward-flowing current pulse. 

Just 300 microseconds later, the sprite lit up in the sky. 
わずか 300 マイクロ秒後、スプライトが空に輝きました。

To add to the mystery, the electric field disappeared far more rapidly than ground observations suggest, in just a few milliseconds.

Bering’s results-some of which he presented at the recent American Geophysical Union meeting in San Francisco-turns sprite theory on its head. 

“The charge that produces sprites is not below in the cloud, it’s in the mesosphere itself,” suggests Bering. 

So now there are new puzzles: 
wwhere could this charge be coming from, and if there’s no QE field, what causes the delay between lightning and sprite? 
この電荷はどこから来ているのでしょうか、QE フィールド(準静電場)がない場合、稲妻とスプライトの間の遅延の原因は何でしょうか?

“We have a problem understanding why the sprite takes so long to form,” admits James Benbrook, a colleague of Bering’s in the physics department at the University of Houston.

And what of the low-frequency hum picked up by labs on the ground? 

Bering thinks the signal may be caused by the lightning strike itself rather than the mechanism that lights up a sprite. 

Researchers on the ground face an additional problem, they are close to one electrical contact of the global electric circuit-the Earth itself. 
地上の研究者たちは、地上でさらなる問題に直面しています、それらは地球全体の電気回路の 1 つの電気接点、つまり地球そのものに近いのです。

The low-frequency hum could be an artefact and we hear it if we are on the ground when the charges in the clouds flow to earth, Bering suggests.

Benbrook agrees. 

The signal received on the ground is more likely due to the rearrangement of charge in the cloud tops, he says, or the flow of current in the lightning channel. 

“But I don’t see what that has to do necessarily with an excitation mechanism in the mesosphere.”

Other researchers urge caution in interpreting Bering’s results. 

“At high altitudes the field can be very small,” says Pasko. 

Inan suggests that more sensitive instruments on the balloon may have picked up the hum of the QE field. 
イナン氏は、気球上のより感度の高い機器が QE 場(準静電場)のハム音を拾った可能性があると示唆しています。

“Whether or not there is a continuing field signature is a matter of how sensitive your measurements are.
It could be there but below the noise level of your instrument.”

Most sprite investigators agree that Bering should have been able to detect the low-frequency hum, and blame his instruments for failing to do so. 

Bering defends the quality of his experiment and insists his instruments were working. 

“We wouldn’t have seen the electric signal of the sprite if they weren’t.”

Can the QE field theory recover from this blow? “My personal guess is no,” says Bering. 
QEフィールド理論はこの打撃から回復できるでしょうか?  「私の個人的な推測はノーです」とベーリングは言う。

“None of the existing models will survive when people finally pay attention to what our data actually says.” 

[Toward an ELECTRIC UNIVERSE® model of Sprites ]
[スプライトのELECTRIC UNIVERSE®モデルを目指して]


〈A glow discharge tube with a magnet showing the red anode column and blue filaments. 〉

The size and color of sprites is simply explained by the very low air pressure at great heights. 

In the same way that a long spark in a laboratory discharge tube becomes an extended glow as the air is pumped from the tube, so the “sparks” of lightning at ground level become colorful glows and filaments when they occur in the upper atmosphere.

In Physics Today, November 2001, Earle R. Williams* made the obvious connection in a feature article, Sprites, Elves, and Glow Discharge Tubes. 
2001 年 11 月の「Physics Today」では、アール・R・ウィリアムズ* が、スプライト、エルフ、およびグロー放電管という特集記事で明らかな関連性を示しました。

“The venerable field of gaseous electronics underlies the understanding of a lightning-like phenomenon of spectacular extent, shape, and color. 
Sprites and elves are a grand natural manifestation of ideas and laboratory experiments conceived many decades ago by Rayleigh, Thomson, Wilson, and Langmuir–all of whom won Nobel prizes–and by a host of 19th century glow discharge tube spectroscopists.”
 スプライトとエルフは、何十年も前にノーベル賞を受賞したレイリー、トムソン、ウィルソン、ラングミュアと多くの 19 世紀のグロー放電管分光学者によって考案されたアイデアと実験室実験が壮大に自然に表現されたものです。」

* Earle Williams is a research scientist at the Massachusetts Institute of Technology in Cambridge. He works at the Parsons Laboratory on the main campus and at Lincoln Laboratory. 
* アール・ウィリアムズは、ケンブリッジにあるマサチューセッツ工科大学の研究員です。 彼はメインキャンパスのパーソンズ研究所とリンカーン研究所で働いています。

〈A sprite (left) mimics the glows seen in a discharge tube (right). Image: Physics Today〉
〈スプライト(左)は、放電管(右)で見られる発光を模倣しています。 画像: 今日の物理学〉

The discharge tube model has been confirmed by many ground-based experiments. 

But discharge tubes require a power supply to function. 

Where is the power supply for sprites? 

Anyone who says that it is powered by the thunderstorm hasn’t understood the question. 

If we don’t understand how a thunderstorm generates lightning then we have much further to go than is generally admitted by researchers.

Bering writes, 

“from what is known to date, it may be speculated that sprites or jets, or both, are an integral feature of every thunderstorm system of moderate size or larger in the terrestrial system, and may be an essential element of the earth’s global electrical circuit. 
Further, it seems likely that they have been a part of thunderstorms that have occurred over previous millions of years or longer. 
One may speculate about the possible occurrences of similar phenomena associated with lightning on other planets where lightning has been detected, most notably Jupiter and Venus.”

Bering’s speculations are well-founded from the ELECTRIC UNIVERSE® point of view but the stumbling block to further understanding is immediately apparent in the use of the words “earth’s global electrical circuit.” 
ベーリング氏の推測は、ELECTRIC UNIVERSE® の観点からは十分に根拠がありますが、理解をさらに進める上での障害は、「地球全体の電気回路」という言葉の使用にすぐに現れます。

As big as the term “global” sounds, the circuit is too restricted. 

It is a circuit that assumes heat driven convection in clouds is the global electricity generator. 

This generator mysteriously separates electric charge in storm clouds to power world-wide currents. 

However, the circuit is “unplugged.” 

It is isolated from electrical connection with anything else in the universe

Such a lack of a holistic or cosmic-scale vision is a fundamental constraint on theorists.

In a report on Venusian lightning, following the successful Russian Venera 11 and 12 entry probes, Professor Donald Hunten of the department of Planetary Sciences at the University of Arizona, Tucson, summed up: 

“The indications are that lightning is likely to occur in any substantial planetary atmosphere. Theories of electrification are faced with the need to explain its presence under a wide variety of circumstances and atmospheric conditions.” 
「実質的な惑星大気中では雷が発生する可能性が高いという兆候があります。 帯電の理論は、さまざまな状況や大気条件下での帯電の存在を説明する必要性に直面しています。」

There are no water clouds on Venus.


In July 1993 at the Cambridge, U.K., Conference of the Society for Interdisciplinary Studies* I presented a paper about the planet Venus that dealt with reports of lightning. 
1993 年 7 月、英国ケンブリッジで開催された学際研究学会* 会議で、私は雷の報告を扱った金星に関する論文を発表しました。

I said:

“The principal difficulty in understanding the origin of lightning is likely to be the assumption that the Earth and Venus are closed electrical systems with no input from the solar plasma environment via the magnetosphere.”

So let us examine the larger picture. 

There has been one crucial name missing from the earlier list of Nobel Prize winners. 

He was on the point of being nominated for a Nobel Prize when he died. Kristian Olaf Bernhard Birkeland (1867-1917) was the founder of experimental astrophysics. 
彼が亡くなったとき、彼はノーベル賞候補にノミネートされる寸前だった。 クリスチャン・オラフ・ベルンハルト・バークランド(=ビルケランド) (1867-1917) は実験天体物理学の創始者です。

Note the crucial adjective “experimental” as distinct from modern theoretical astrophysics. 

He studied under Poincaré and Hertz and was a professor at Oslo University at the age of 31. 

Wealth and fame accompanied his many achievements in technology and applied physics.

Birkeland was the good guy in a 50-year dispute involving the idea that electrons streaming along magnetic field lines caused the Earth’s auroras. 

His opponent was the astronomer Sydney Chapman who maintained that the Earth moved through a vacuum. 

In 1974 space probes found in Birkeland’s favour. 

Chapman and others then promptly made space plasma superconducting, which relieved them from the complications of dealing with electric fields. 

Birkeland actually demonstrated his theory long before in an experiment called a “terrella.” 

It consisted of an electromagnet contained within a sphere and placed in a large vacuum chamber. 

By initiating an electric discharge in the chamber he was able to reproduce a light show with many of the odd features of auroras. 

The importance of this simple experiment cannot be overstated because it demonstrates that aurorae and lightning seem to require an electrical power source external to the Earth! That would explain the puzzle raised by Bering: 
“The charge that produces sprites is not below in the cloud, it’s in the mesosphere itself.”
この単純な実験の重要性は、どれだけ強調してもしすぎることはありません。なぜなら、この実験は、オーロラと稲妻が地球の外部に電源を必要とするように見えることを実証しているからです。 そうすれば、ベーリングが提起した謎が説明できるでしょう:

The ELECTRIC UNIVERSE® model suggests that the Earth plays a cathode role in the Sun’s discharge and therefore is in the business of supplying negative electrons to space and receiving positive ions from the solar wind. 
エレクトリック・ユニバース® モデルは、地球が太陽の放電において陰極の役割を果たし、したがって宇宙にマイナス電子を供給し、太陽風からプラスイオンを受け取るという仕事をしていることを示唆しています。

It is interesting therefore that the presence of solar wind ions inside the earth’s magnetosphere has puzzled scientists. 

Thunderstorms are not electricity generators, they are passive elements in an interplanetary circuit, like a self-repairing leaky condenser. 

The energy stored in the cloud “condenser” is released as lightning when it short-circuits. 

The short-circuits can occur either within the cloud or across the external resistive paths to Earth or the ionosphere. 

The charge across the cloud “condenser” gives rise to violent vertical electrical winds within the cloud, not vice versa

By creating a short-circuit to high altitudes in the storm the lightning effectively “throws the switch” connected to the glow discharge “tube” in the upper atmosphere. 

It then makes perfect sense that the much taller positive cloud-to-ground discharge will be more effective at providing power to the glow discharge than will low-level negative cloud-to-ground lightning because the circuit resistance is lower. 

Ultimately, lightning on Earth is driven by electric power focused on the Sun but minutely intercepted by the Earth. So lightning on Earth is a pale imitation of what is happening on the Sun.
最終的に、地球上の雷は太陽に焦点を当てた電力によって駆動されますが、地球によってわずかに遮断されます。 したがって、地球上の稲妻は、太陽で起こっていることの淡い模倣です。

It is not surprising, therefore, that it took a man who was an electrical researcher, astronomer, and expert on the effects of lightning, Dr. Charles E. R. Bruce of the Electrical Research Association in England, to recognize the fact. That was in 1941! Such is the inertia of science.
したがって、電気研究者、天文学者、雷の影響の専門家である英国電気研究協会のチャールズ E.R. ブルース博士がこの事実を認識するのに時間がかかったのも不思議ではありません。 それは1941年のことでした! これが科学の慣性です。


〈Dr. Charles Bruce (1902-1979) showing the signatures of electric discharges in planetary nebulae.〉〈 チャールズ ブルース博士 (1902-1979)は、惑星状星雲の放電の痕跡を示しています。〉

So Bering is right, similar phenomena will be encountered on other planets, but modified by each planet’s environment. 

And it is quite sobering for historians of science to note that a century ago Birkeland foreshadowed that electrical experiments like the terrella could be done to model other planets, the Sun, and galaxies. 

He wrote: 

“experiments were carried out under these conditions for many years. It was in this way that there gradually appeared experimental analogies to various cosmic phenomena, such as zodiacal light, Saturn’s rings, sun spots and spiral nebulae.”
「実験はこのような条件下で長年にわたって行われました。 このようにして、黄道帯の光、土星の輪、黒点、渦巻星雲など、さまざまな宇宙現象に対する実験的な類似点が徐々に現れてきました。」

* See http://www.catastrophism.com/cdrom/pubs/journals/review/v1993cam/index.htm[1]
[Do we have any proof of interplanetary electric currents?]

In the Venus paper mentioned earlier, I wrote:

“The magnetic flux ‘ropes’ of the solar wind, entwined about the planet, are indicative of electric currents flowing directly into the planet’s ionosphere. 
…Any cosmic body which is charged relative to the surrounding plasma has a plasma sheath or magnetosphere. 
It is a region in which electric current flows and energy is released. 
The sheath is generally invisible unless the current is strong enough to generate light, such as on the Sun and in the coma and tails of comets.”
…周囲のプラズマに比べて帯電している宇宙天体には、プラズマ シースまたは磁気圏があります。

Four years later in a news item, “Planet’s tail of the unexpected” on 31 May 97, New Scientist reporter, Jeff Hecht, wrote:

“One of our neighboring planets can still pack a few surprises, it seems. 
Using satellite data, an international team of researchers has found that Venus sports a giant, ion-packed tail that stretches almost far enough to tickle the Earth when the two planets are in line with the Sun. 
‘I didn’t expect to find it,’ says team member Marcia Neugebauer of the Jet Propulsion Laboratory in Pasadena, California. 
‘It’s a really strong signal, and there’s no doubt it’s real.’



NASA’s Pioneer Venus Orbiter first found the tail in the late 1970’s. Around 70,000 kilometres from the planet, the spacecraft detected bursts of hot, energetic ions, or plasma. 
NASA のパイオニア金星探査機が初めて尾部を発見したのは 1970 年代後半でした。 惑星から約 70,000 キロメートル離れたところで、探査機は高温の高エネルギーの爆発のイオンまたはプラズマを検出しました。

But now Europe’s Solar and Heliospheric Observatory (SOHO), a project partly sponsored by NASA, has shown that the tail stretches some 45 million kilometres into space, more than 600 times as far as anyone realized. 

This satellite, which sits about 1.5 million kilometres away from the Earth, passed through the tail last July, when it was roughly in line with Venus and the Sun.

 Neugebauer suspects the tail is ‘a lot of little stringy things‘ like those of some comets, which can have several ion tails. 

If so, says Neugebauer, 
‘the theorists are going to have fun trying to explain why they’re as narrow as we saw them’. Standard physics says that narrow plasma streams are unstable and should dissipate fast. No one can yet explain how they hold together over tens of millions of kilometres. This surprise has since been repeated for comet Hyakutake with its tail stretching half a billion kilometres across the solar system! 
「理論家たちは、なぜ私たちが見たのと同じくらい狭いのかを説明しようとして楽しいでしょう。」 標準的な物理学によれば、狭いプラズマ流は不安定であり、急速に消散するはずです。 それらが数千万キロメートルにわたってどのように結合しているのかをまだ誰も説明できません。 この驚きはその後、太陽系を横切って尾を5億キロメートルも伸ばした百武彗星でも繰り返されました。

[No one can explain ‘stringy things’ in space?][宇宙の『糸状物』を説明できる人は誰もいない?

Birkeland’s name has been given to an electrical phenomenon very important in space plasma. 

He found that electric currents move through space largely by means of electrons spiraling along magnetic field lines. 

Such a plasma current is known as a “Birkeland current“. 

When two Birkeland currents are parallel they experience a long range attractive force that brings them closer together, or pinches them. 

When they get very close, a short range repulsive force holds them apart so that they maintain their identity. 

The result is that separate Birkeland current filaments come together to form pairs and the pairs form a twisted, filamentary “rope” of electric current in space. 

Plasma physicists have shown that Birkeland currents can remain coherent even over vast intergalactic distances.

The prescient Birkeland again:

“According to our manner of looking at the matter, every star in the universe would be the seat and field of activity of electric forces of a strength that no one could imagine. 
We have no certain opinion as to how the assumed enormous electric currents with enormous tension are produced, but it is certainly not in accordance with the principles we employ in technics on the earth at the present time. One may well believe, however, that a knowledge in the future of the electrotechnics of the heavens would be of great practical value to our electrical engineers. It seems to be a natural consequence of our points of view to assume that the whole of space is filled with electrons and flying electric ions of all kinds. We have assumed that each stellar system in evolutions throws off electric corpuscles into space.”
巨大な張力を伴う巨大な電流がどのようにして生成されるのかについては、私たちにも明確な意見はありませんが、それが現在地球上で採用されている技術原理と一致していないことは確かです。 しかし、将来の天上の電気技術に関する知識は、電気技術者にとって非常に実用的な価値があると信じる人もいるかもしれません。 宇宙全体が電子とあらゆる種類の電子イオンで満たされていると仮定するのは、私たちの視点からすると当然の帰結であるように思われます。 私たちは、進化の過程でそれぞれの恒星系が電気粒子を宇宙に飛ばしていると考えてきました。」

Birkeland was right. 

The “stringy things” that puzzled astronomers are proof positive of electric currents in plasma. 

Venus-and Jupiter, the archetypal god of thunder,-are part of an electric circuit that involves the Sun. 

The Sun is part of a circuit that involves the entire galaxy. 

The Earth with its own Langmuir sheath (misnamed magnetosphere) is wired in to the same power grid. 
独自のラングミュア シース (磁気圏という誤った名前) を持つ地球は、同じ電力網に配線されています。

This raises a serious question about the study of weather and climatology because a crucial energy input to the Earth is unrecognized. 

If that is so then predictions about the Earth’s climate are presently worthless because they ignore the largest single influence on Earth’s weather. 

This oversight may explain why scientists are having difficulties explaining weather systems on other planets too. 

Jupiter, for instance, is known to be the source of intense electromagnetic activity. 

That energy is thought to be derived from Jupiter’s rotation-in other words Jupiter is a giant electrical generator. 

If so, it should be expected that the equator is being ‘braked’ in the process. 
What do we find? 

The equator is spinning fastest of all! Jupiter is an electric motor, not a generator. 

Enormous power is being intercepted by its vast Langmuir sheath, lighting up the moon, Io, with cathode arcs, on its way to Jupiter. 

This simple electrical model also explains why the fastest winds in the solar system, 1000 mph, are found on Neptune, the most distant planet from the Sun. 
この単純な電気モデルは、太陽系で最も速い風 (時速 1,000 マイル) が太陽から最も遠い惑星である海王星に見られる理由も説明します。

And it explains the enigmatic “spokes” in Saturn’s rings.

Bering notes that short duration (~1 ms) gamma ray (>1 MeV) bursts of terrestrial origin have been detected by the Compton Gamma Ray Observatory over thunderstorm regions, and their source is believed to lie at altitudes greater than 30 km. X-rays and gamma-rays are hallmarks of high-energy electric discharge processes. 
ベーリング博士は、雷雨地域上空でコンプトンガンマ線天文台によって地上起源の短時間(~1ms)ガンマ線(>1MeV)バーストが検出されており、その発生源は高度30km以上にあると考えられていると指摘している。  X 線とガンマ線は、高エネルギーの放電プロセスの特徴です。

An external source delivering power through an atmosphere that is increasing in density downwards, can be expected to give rise to the highest energy radiation at the top of the atmosphere or at the footprints of arcs on the surface (lightning). 
下方に密度が増加する大気中を通って電力を供給する外部電源は、大気の上部または地表のアークの足跡 (雷) で最高のエネルギー放射を引き起こすことが期待できます。

It is a situation we see on the Sun where the hardest radiation comes from high above the photosphere, except when an arc touches down and a solar flare results. 

The electrical model may be extended to all bodies in an ELECTRIC UNIVERSE®.
この電気的モデルは、エレクトリックユニバース® 内の、すべての天体に拡張できます。


So, as in The Fellowship of the Ring, Bering’s “Dark Rider” didn’t find what it was looking for. 
したがって、『リングの仲間』と同様、ベーリングの「ダーク ライダー」は探していたものを見つけることができませんでした。

The secret for the wizards of science is to let die their ancient myths of an electrically sterile universe

Then the future may be theirs to foretell. It requires no magic.

If Tolkien will forgive me,

There is one power to rule them all
and in the darkness
light them
- 電気が。


An interesting footnote to lightning on Venus: 

It is known that lightning backscatters microwaves at wavelengths of a few centimetres. 

One of the most puzzling discoveries by the Magellan Venus Orbiter was that all high terrain on Venus reflected radar signals as if it were coated by metal. 

I explained this phenomenon several years ago as being due to a glow discharge in a dense plasma. 

It is the most prevalent form of lightning on Venus because that planet doesn’t have clouds like the Earth to provide a convenient path to ground for cosmic electric power. 

Without clouds on Earth we too would have glowing mountain tops and destructive super-bolts from a blue sky. The Galileo spacecraft detected super-bolts on Venus. 
地球上に雲がなければ、私たちも山頂が光り、青い空から破壊的なスーパーボルトが降り注ぐことになるでしょう。 ガリレオ探査機は金星のスーパーボルトを検出しました。

[What is a sprite?]

Sprites are colossal towers of red and blue light, 10 kilometres or more across, usually climbing up to 30 kilometres from a starting height of about 50 kilometres, well above the storm. 
スプライトは、直径 10 キロメートル以上の赤と青の光の巨大な塔で、通常、嵐のはるか上空、約 50 キロメートルの開始高度から最大 30 キロメートルまで上昇します。

They glow for only a few thousandths of a second, which makes them difficult to see and record. 
光るのは数千分の 1 秒だけなので、観察したり記録したりするのは困難です。

Most importantly they seem to be triggered by lightning flashes in storms far below.

Although we are all familiar with the story of vertical movements of water droplets in storm clouds giving rise to lightning, the truth is that it is not known what causes a thunderstorm. 

Somehow negative charges collect at the bottom of a cloud and positive charges at the top. 

Eventually the intensity of the electric field between cloud and ground causes electrical breakdown of the air

The freed electrons are accelerated by the field toward the ground in the form of sinuous “stepped leaders.” 

This is a weakly luminous process. 
On reaching the ground a conductive channel is now available between the ground and the cloud. 

The result is the brilliant arc of the “return stroke”
 – a bolt of lightning.
– 稲妻です。

The simplest and smallest sprites are single vertical columns named C sprites. 
Large collections of C sprites resemble a mammoth fireworks display. 
最も単純で最小のスプライトは、C スプライトという名前の単一の垂直列です。
 C スプライトの大規模なコレクションは、巨大な花火大会に似ています。

A subset of the sprites with tendrils
–often the largest and most energetic–
also exhibit upward branching toward the ionosphere, and are named carrots. 

Very large sprites with diffuse tops and lower tendrils extending down to altitudes of 30-40 km have been dubbed angels, jellyfish, and A-bombs. 
高度 30 ~ 40 km まで伸びる上部と下部の蔓が拡散した非常に大きなスプライトは、天使、クラゲ、原爆などと呼ばれてきました。

With maximum vertical extents exceeding 60 km, these giant sprites extend vertically three times farther than the largest thunderstorms.
最大垂直方向の広がりは 60 km を超え、これらの巨大なスプライトは最大の雷雨嵐よりも 3 倍も垂直方向に広がります。

Long-lived species may also be present at lower altitudes-in the long tendrils that stretch down below the sprite’s body to the cloud tops like the tentacles of an octopus. 

These tendrils light up with bright, spherical “beads” which on some occasions outlive the main sprite, lasting up to a hundred milliseconds in some cases, and can even momentarily flare up long after the sprite body has faded. 

“Such bright spots give the impression of embers in a dying fire,” says Stenbaek-Nielsen, from the Geophysical Institute of the University of Alaska.

A good web page is: http://lightning.nmt.edu/sprites/sprites.html[2]
[What is an elve?]

Elves are shaped quite differently from sprites and were first identified in 1990 as brief brightenings of the airglow layer in space shuttle imagery. 
エルフはスプライトとはかなり異なる形状をしており、1990 年にスペースシャトルの画像の大気光層が一時的に明るくなったものとして初めて確認されました。

The ring like elve in Figure 1 (not “elf”: the acronym stands for “emissions of light and very low frequency perturbations from electromagnetically pulsed (EMP) sources”) is centered on the vertical channel to ground. 
図 1 のエルフのようなリング(「エルフ」ではありません: 
この頭字語は「電磁パルス (EMP) ソースからの光の放射と超低周波摂動」を表し、地面への垂直チャネルを中心にしています。

It is a rapidly expanding ring of luminosity in a narrow altitude range (85-95Êkm). 
それは、狭い高度範囲 (85 ~ 95 キロメートル) で急速に拡大する光の輪です。

For an observer on the ground, the flash appears to drop in altitude and spread outward with time. 

While the optical flash may last only tens of microseconds, light is emitted from different regions for 1Êmillisecond as the EMP propagates radially outward.
光フラッシュは数十マイクロ秒しか持続しませんが、EMP が半径方向外側に伝播するにつれて、光は 1 ミリ秒間さまざまな領域から放射されます。


[What is a gnome?]

“We’re seeing things we’ve never seen before on top of active storms-electrical discharges coming out the top of clouds that could be a new form of lightning,” says Walter Lyons of the Yucca Ridge Field Station, Colorado. 

They have tentatively been christened gnomes. 

“They look like fingers of light going straight up out of the cloud but at rather slow speed. It looks like lightning in pictures but takes over a second or two to happen.” 
「それらは雲からまっすぐ上っていく光の指のように見えますが、速度はかなり遅いです。 写真では稲妻のように見えますが、それが起こるまでには 1 ~ 2 秒以上かかります。」

Could gnomes be more energetic than sprites? 

“I wouldn’t volunteer to sit in one,” says Lyons. 

“Sprites have tremendous amounts of energy spread over a great volume. We’ve got no idea how much energy is in a gnome, but it’s compressed into a smaller area.” —
「スプライトは膨大な量のエネルギーを大量に分散させています。 ノームの中にどれだけのエネルギーがあるのかは分かりませんが、より小さな領域に圧縮されています。」 —

1.    http://www.catastrophism.com/cdrom/pubs/journals/review/v1993cam/index.htm: http://www.catastrophism.com/cdrom/pubs/journals/review/v1993cam/index.htm
2.    http://lightning.nmt.edu/sprites/sprites.html: http://lightning.nmt.edu/sprites/sprites.html
Source URL: https://www.holoscience.com/wp/the-balloon-goes-up-over-lightning/