[The Thunderbolts Project, Japan Division]公式ブログ Takaaki Fukatsu’s blog

[The Thunderbolts Project,Japan Division] エレクトリックユニバース  電気的宇宙論、プラズマ宇宙物理学、 電気的観察物理学、解説、翻訳、 深津 孝明

Gravity Probe B and Related Matters  重力探査機Bとその関連事項 by Wal Thornhill

Gravity Probe B and Related Matters  重力探査機Bとその関連事項

by Wal Thornhill | September 5, 2011 12:41 am

The following article is by Jeremy Dunning-Davies, Senior Lecturer in Physics at the University of Hull and member of the Royal Astronomical Society and Natural Philosophy Alliance.
次の記事は、ハル大学物理学の上級講師であり、王立天文学協会および自然哲学同盟のメンバーであるジェレミー・ダニング・デイビスによるものです。

 1
 


[1]
In a posting on the Thunderbolts web site on June 6th[2], Mel Acheson commented on the recent claims of finding a spiral galaxy in the southern skies which looks remarkably like the Milky Way, but double its accepted size. 
6 月 6 日のサンダーボルツ Web サイトへの投稿 [2] で、メル・アチソンは、天の川に非常によく似ているが、一般に認められている大きさの 2 倍である渦巻銀河が南の空で発見されたという最近の主張についてコメントしました。

The article rightly draws attention to the fact that both the size of this galaxy and its distance from us are determined by utilising red-shift data. 
この記事は、この銀河の大きさと私たちからの距離の両方が赤方偏移データを利用して決定されるという事実に正しく注意を喚起しています。

It is pointed out, quite correctly, that ‘the result is as certain as mathematics can be’. 
全く正確に指摘されているのは、「結果は数学と同じくらい確実です。」という事です。

However, this is followed by the observation that everything based on red-shift measurements must be in doubt. 
しかし、これには、赤方偏移測定に基づくものはすべて疑わしいに違いないという観察が続きます。

The problems associated with the interpretation of any red-shift data have been around for many years but have been consistently buried under the proverbial carpet. 
赤方偏移データの解釈に関連する問題は長年にわたって存在していましたが、一貫してことわざのカーペットの下に埋もれてきました。

The careers of several people, notably Halton Arp, have been disrupted if not actually ruined because they have questioned the validity of the conventional interpretation of this type of data.
何人かの人々、特にハルトン・アープのキャリアは、この種のデータの従来の解釈の妥当性に疑問を抱いたため、実際に台無しにならなかったとしても、混乱させられました。

 2


 [3] [Photo: W. Thornhill]
Dr. Halton Arp at University College London, October 2000. 

ハルトン・アープ博士、ユニバーシティ・カレッジ・ロンドン、2000年10月。

This is a sad, if not disgraceful, story and would be disgusting if it was an isolated case in this truly fascinating subject of astronomy/astrophysics.
これは、恥ずべきことではないにしても、悲しい話であり、もしこれが天文学/天体物理学という本当に魅力的な主題における孤立した事例であったとしたら、うんざりするでしょう。

 Unfortunately, it is not an isolated case; it is one of many.
残念ながら、これは特別なケースではありません;
それはたくさんあるうちの一つです。

However, no sooner had one had time to digest the contents of this article than one was greeted by the eye-grabbing headline
 – ‘Gravity probe shows Einstein got it right again’ – 
in the June issue of Astronomy and Geophysics, the house journal of the Royal Astronomical Society. 
しかし、この記事の内容を理解しようとするとすぐに、目を引く見出しが目に飛び込んできました
– 「重力探査はアインシュタインが再び正しいことを示した」 –
王立天文学協会の機関誌である「天文学と地球物理学」の 6 月号に掲載されました。

The said article appeared in the News section and claimed the NASA mission involved ‘was to carry out the most sensitive test yet of general relativity’ and it had concluded that ‘Einstein was right’. 
ニュース欄に当該記事が掲載されました、そしてNASAのミッションは「一般相対性理論のこれまでで最も敏感なテストを実施すること」であり、「アインシュタインは正しかった」と結論づけたと主張しました。

One immediately wondered to what the word ‘again’ referred precisely but, on reading the article, I was struck by some of the data quoted: 
it is apparently one of NASA’s longest running projects[4], the idea first being proposed in 1959 and initial funding coming in 1963. 
「再び」という言葉が正確に何を指すのかすぐに疑問に思いましたが、記事を読んで、引用されたデータのいくつかに衝撃を受けました:
これは明らかに NASA で最も長く続いているプロジェクトの 1 つであり [4]、このアイデアは 1959 年に最初に提案され、最初の資金提供は 1963 年に行われました。

It has involved more than 100 postgraduate students and 350 undergraduates. 
これまでに 100 人を超える大学院生と 350 人の学部生が参加しました。

One immediately wonders about the total cost and, also, how much indoctrination of potentially good scientists has been achieved. 
総コストと、潜在的に優れた科学者への教化がどれだけ達成されたのか、すぐに疑問に思う人もいるでしょう。

Over the period involved, the sum of money involved must have been considerable and, when one then contemplates all the other high-profile, expensive experiments, such as the Large Hadron Collider and LISA, being run at the present time, one ponders yet again the wisdom of all this enormous expenditure.
関係する期間を考えると、かかった金額は相当なものだったに違いなく、大型ハドロン衝突型加速器やLISAなど、現在実行されている他の注目を集める高価な実験すべてを考えると、この膨大な支出すべての賢明さを、もう一度熟考させてしまいます。
 
Then one looks at the claim that ‘the probe measured the misalignment of the gyroscope spin axis and the reference star to a startling precision of 0.0005 arcsec’, and wonders. 
次に、「探査機はジャイロスコープの回転軸と基準星の位置ずれを 0.0005 秒角という驚くべき精度で測定した」という主張を見て、不思議に思います。

Some figures here and in other experiments also raise the query about the position of the actual boundary between noise and genuine physical effect. 
ここや他の実験のいくつかの図は、騒音と真の物理的効果との間の実際の境界の位置についての疑問も提起します。

In fact, does such a boundary exist and, if so, is it one which moves over time as measurement techniques improve
実際、そのような境界は存在するのでしょうか? 
もし存在するとしたら、それは測定技術が向上するにつれて時間の経過とともに移動するものなのでしょうか?

However, all these projects have one thing in common; 
they all conform to present-day conventional scientific wisdom and therein, in my view, lies one of the problems.
ただし、これらすべてのプロジェクトには 1 つの共通点があります;
それらはすべて、今日の従来の科学通念に準拠しており、そこに問題の 1 つがあると私は考えています。

 3


 [5] [Image and caption credit: NASA
Artist concept of Gravity Probe B orbiting the Earth to measure space-time, a four-dimensional description of the universe including height, width, length, and time. 
高さ、幅、長さ、時間を含む宇宙の 4 次元記述である時空を測定するために地球を周回する重力探査機 B のアーティストのコンセプト。

―――――――― 
[But as a natural philosopher asked, “If time is a dimension, point me in the direction of time? -WT]
[しかし、自然哲学者が尋ねたように、「時間が次元であるなら、私を時間の方向に向けてください?」  -WT]

As is explained on the official NASA web page[6]:
NASA の公式 Web ページで説明されているように[6]:

… this experiment, launched in 2004, used four ultra-precise gyroscopes to measure the hypothesized geodetic effect, the warping of space and time around a gravitational body, and frame-dragging, the amount a spinning object pulls space and time with it as it rotates. 
… 2004 年に開始されたこの実験では、4 台の超高精度ジャイロスコープを使用して、回転しながら、仮説上の測地効果、重力体の周りの空間と時間の歪み、およびフレームドラッグ (回転する物体が空間と時間を引っ張る量) を測定しました。

Gravity Probe B determined both effects with unprecedented precision by pointing at a single star, IM Pegasi, while in a polar orbit around Earth. 
重力探査機 B は、地球の周りの極軌道上で単一の星 IM ペガシー(ペガサス)を指すことで、両方の影響を前例のない精度で測定しました。

If gravity did not affect space and time, Gravity Probe B’s gyroscopes would point in the same direction forever while in orbit. 
重力が空間と時間に影響を与えなかった場合、重力プローブ B のジャイロスコープは軌道上で永遠に同じ方向を指すことになります。

But in confirmation of Einstein’s theories, the gyroscopes experienced measurable, minute changes in the direction of their spin, while Earth’s gravity pulled at them.
しかし、アインシュタインの理論の裏付けとして、地球の重力がジャイロスコープを引っ張る間に、ジャイロスコープはその回転方向に測定可能な微細な変化を経験しました。
―――――――― 
It might be noted that, in this NASA document, reference is continually made to space and time, rather than to space-time and in order to illustrate ideas to the uninitiated, one of the principal investigators, Francis Everitt, said, “Imagine the Earth as if it were immersed in honey. As the planet rotates, the honey around it would swirl, and it’s the same with space and time”.
この NASA 文書では、初心者にアイデアを説明するために、時空ではなく空間と時間への言及が継続的に行われていることに注意すべきだと、主任研究者の 1 人、フランシス・エヴェリットは次のように述べています、
「地球が蜂蜜に浸っているかのように想像してみてください。 惑星が回転すると、その周りの蜂蜜が渦を巻きますが、それは空間と時間でも同じです。」

A useful analogy? 
役に立つ例えでしょうか?

Possibly, but it very definitely refers to a happening in everyday three-dimensional space which occurs over time. 
おそらく、しかし間違いなく、時間の経過とともに起こる日常の三次元空間での出来事を指します。

It would seem that, if there were any frame dragging here, it would refer to the frame, fixed in the moving body comprising the usual coordinate axes, being dragged through the honey
ここでフレームの引きずりがあるとすれば、それは通常の座標軸を構成する移動体に固定されたフレームが蜂蜜の中を引きずられることを指すと思われるます。

Is this the same thing as that to which the experiment refers? 
これは実験で言及されているものと同じものですか?

If so, why all the talk of space-time? 
もしそうなら、なぜ時空の話ばかりするのでしょうか?

However, more of that when, for this particular example of Gravity Probe B, it is wondered what scientific queries come to the mind of an admitted sceptic as far as modern scientific conventional wisdom is concerned?
ただし、重力プローブ B のこの特定の例では、さらに多くのことが起こります、現代科学の常識に関する限り、自認している懐疑論者の心にはどんな科学的疑問が思い浮かぶだろうか?

The first paragraph of the RAS report summed it all up. 
RAS レポートの最初の段落にすべてが要約されています。

Primarily, it was, as mentioned already, to carry out the most sensitive test of general relativity. 
主な目的は、すでに述べたように、一般相対性理論の最も感度の高いテストを実行することでした。

The remainder of that first paragraph went on to say that ‘the team measured the predicted distortion of space-time around Earth from the mass of the planet, and demonstrated that the rotation of the Earth does indeed twist space-time, causing frame dragging’. 
その最初の段落の残りの部分では、「研究チームは、地球の質量から地球の周囲の時空の歪みの予測を測定し、地球の回転が実際に時空をねじ曲げ、フレームの引きずりを引き起こすことを実証した」と続けました。

The uninitiated are probably impressed immediately but anyone with a modicum of appropriate knowledge might well ask ‘But what is space-time and what frame is being dragged?’ 
初心者はおそらくすぐに感銘を受けるでしょうが、ある程度の適切な知識がある人なら誰でも、「しかし、時空とは何で、どのフレームが引きずられているのでしょうか?」と疑問に思うかもしれません。

This seems a good, relevant question, particularly in view of earlier comments made here. 
これは、特にここで行われた以前のコメントを考慮すると、適切で適切な質問のように思えます。

In truth, space-time is a purely mathematical construct. 
実際のところ、時空は純粋に数学的な構造物です。

It is a four-dimensional mathematical space in which three of the axes represent our familiar spatial coordinates and fourth axis represents time. 
これは 4 次元の数学的空間であり、3 つの軸が私たちのよく知っている空間座標を表し、4 番目の軸が時間を表します。

The four axes are mutually perpendicular to one another and this, in itself, indicates the entity to be a mathematical concept rather something genuinely physical. 
4 つの軸は互いに直交しており、これ自体が、その実体が真に物理的なものではなく、数学的な概念であることを示しています。

Hence, any point in such a space does tell the observer where a body is at a particular time and the name ‘space-time’ does seem eminently appropriate
 – but the space is mathematical; 
it is not reality as we know it in our everyday lives. 
したがって、そのような空間内の任意の点は、観察者に物体が特定の時間にどこにあるかを伝えるものであり、「時空」という名前は非常に適切であるように思われます
– しかし、空間は数学的です;
それは私たちが日常生活で知っているような現実ではありません。

Once this question concerning the meaning of the word ‘space-time’ is answered, the follow-up question must be ‘What is the metric (where by metric is meant the square of the distance between two neighbouring points in the space) considered here?’
「時空」という言葉の意味に関するこの質問に答えたら、次の質問は「ここで考慮される距離 (距離とは空間内の 2 つの隣接する点の間の距離の 2 乗を意味します) は何ですか?」でなければなりません。

 4
 


[7]Stephen Crothers, Laureate of the Telesio-Galilei Academy of Science, 2008. 
ティーブン・クローザーズ、テレシオ・ガリレイ科学アカデミー受賞者、2008 年。

In general relativity, the Einstein field equations form the starting point for almost everything but there are several solutions to these equations. 
一般相対性理論では、アインシュタイン場方程式がほぼすべての出発点となりますが、これらの方程式にはいくつかの解があります。

The first, and the one about which we often hear mention, was due to Karl Schwarzschild. 
最初の、そして私たちがよく言及するのは、カール・シュヴァルツシルトによるものでした。

For Gravity Probe B, it emerges that the basic work was due to Leonard Schiff and was published in Physical Review Letters in 1960 (volume 4, pages 215-7) and, probably as expected, the Schwarzschild metric was involved. 
重力プローブ B については、基本的な研究が レナード・シフによるもので、1960 年に 物理的なレビューレター(第 4 巻、215 ~ 7 ページ) に掲載されたことが明らかになり、おそらく予想通り、シュヴァルツシルト計量が含まれていました。

However, which form of that metric was used, the original or the later modified version? 
しかし、その指標の元の形式と後で変更されたバージョンのどちらが使用されたのでしょうか?

This is an extremely important query because, as has been pointed out on several occasions by both myself and Stephen Crothers, the version of the Schwarzschild metric that appears in almost all modern texts is not the version which appears in the original paper. 
これは非常に重要な質問です。なぜなら、私と スティーブン・クローザーズの両方が何度か指摘したように、ほとんどすべての現代のテキストに登場するシュヴァルツシルト計量のバージョンは、元の論文に登場するバージョンではないからです。

It might be wondered also if using this metric is correct in any case. 
いずれにせよ、この指標を使用することが正しいかどうか疑問に思うかもしれません。

What is implied physically by assuming this particular metric? 
この特定の指標を仮定すると、物理的に何が暗示されますか?

One has to look very carefully at any assumptions made in deriving these expressions to see just how precisely they apply to situations under consideration. 
これらの式を導き出す際に行われた仮定を注意深く調べて、それらが検討中の状況にどれだけ正確に当てはまるかを確認する必要があります。

It seems that such detailed scrutiny is rarely performed and often one suspects basic results do not necessarily apply in the experimental/observational situations under consideration. 
このような詳細な調査はめったに行われないようであり、基本的な結果が検討中の実験/観察状況に必ずしも当てはまるわけではないと疑われることがよくあります。

As for the frame dragging, it would seem the frame to which reference is being made is that of the mathematical four-dimensional space-time and so, yet again, the person primarily concerned with what is happening in our effectively three-dimensional world must wonder what is really going on and what relevance this expensive project has to physical reality.
フレームのドラッグに関しては、参照されているフレームは数学的な 4 次元時空のフレームであるように思われるため、繰り返しになりますが、事実上 3 次元の世界で何が起こっているかに主に関心がある人は、 実際に何が起こっているのか、そしてこの高価なプロジェクトが物理的な現実とどのような関連性があるのか疑問に思います。

The other major thought to be occasioned by this news article concerns the general theory of relativity itself. 
このニュース記事によって引き起こされたと考えられるもう 1 つの主要な考えは、一般相対性理論自体に関するものです。

Considering the time and money undoubtedly spent on this Gravity Probe B mission, it might seem inevitable to some sceptics that a positive result would have to ensue. 
この重力探査機 B のミッションに間違いなく費やされた時間と資金を考慮すると、一部の懐疑論者にとっては、肯定的な結果が得られるのは必然であるように思えるかもしれません。

Always remember that, in true science, a negative result can be as important, if not more important, than a positive one but to the public, which in the end pays all the bills, only positive results herald any sort of success. 
真の科学では、否定的な結果も肯定的な結果と同じくらい、あるいはそれ以上に重要である可能性があることを常に忘れないでください、しかし、最終的にすべての請求を支払う公衆にとっては、肯定的な結果だけがあらゆる種類の成功を告げるものです。

Be that as it may, the question of the true status of general relativity within science should be assessed. 
いずれにせよ、科学における一般相対性理論の真の地位の問題は評価されるべきである。

Soon after the theory first appeared, it was credited with success for solving the old problem associated with the shift of the perihelion of Mercury. 
But why? 
この理論が最初に登場してすぐに、水星の近日点の移動に関連する古い問題の解決に成功したと評価されました。
しかし、なぜ?

A satisfactory explanation had already been provided in 1898 by a German schoolteacher, P. Gerber, who published his findings in Zeitscrift für Math u Phys. (vol. 43, p 93). 
満足のいく説明は 1898 年にドイツの学校教師 P. ガーバーによってすでに提供されており、彼はその研究結果を「数学と物理学の研究」誌に発表しました。  (43巻、93ページ)。

For some reason this seems to have been ignored even though it concerned a well-known outstanding problem and Gerber had published in a highly prestigious journal. 
何らかの理由で、これはよく知られた未解決の問題に関するものであり、ガーバーが非常に権威のあるジャーナルに発表したにもかかわらず、無視されていたようです。

Of course, the dubious expeditions of 1919 which led to the claim that the theory correctly predicted the bending of light rays were possibly the clincher as far as popular acclaim was concerned. 
もちろん、この理論が光線の曲がりを正確に予測したという主張につながった 1919 年の疑わしい探検は、おそらく大衆の評価に関する限り決定的なものでした。

However, is general relativity required to explain these phenomena? 
The answer is an emphatic ‘No!’ 
しかし、これらの現象を説明するには一般相対性理論が必要なのでしょうか?
答えは断固とした「ノー!」です。

Apart from other publications by such as Harold Aspden, Bernard Lavenda eventually succeeded in publishing an article in 2005 entitled Three Tests of General relativity as Short-wavelength Diffraction Phenomena (Journal of Applied Science, vol 5, no. 2, pp. 299-308). 
ハロルド・アスプデンなどによる他の出版物とは別に、バーナード・ラヴェンダは最終的に 2005 年に「短波長回折現象としての一般相対性理論の 3 つのテスト」と題された論文を発表することに成功しました (応用科学ジャーナル、vol 5、no. 2、pp. 299-308)  )。

It might be noted that this article didn’t claim general relativity incorrect, merely that there was an alternative method for obtaining various physical results. 
この記事は一般相対性理論が間違っていると主張したのではなく、単にさまざまな物理的結果を得る別の方法があったと主張していることに注意してください。

One genuinely wonders if Lavenda’s approach could be used to consider the situation examined by Gravity Probe B.
ラヴェンダのアプローチを、重力探査機 B によって調査された状況を考慮するために本当に使用できるかどうか、疑問に思う人もいるでしょう。

The end result, however, is that enormous sums of public money are continuing to be spent on pet projects of a select few and the contention has to be that this is retarding true progress in science. 
しかし、その結果、選ばれた少数の人々の得意なプロジェクトに巨額の公的資金が支出され続けており、これが科学の真の進歩を遅らせていると主張せざるを得ません。

On the other hand, has a slight chink appeared in the armour? 
一方、その装甲にはわずかな亀裂が生じていませんか?

A recent BBC posting refers to the Sun emitting vast amounts of magnetically charged plasma, a great deal of which enters the Earth’s atmosphere. 
最近の BBC の投稿では、太陽が膨大な量の磁気を帯びたプラズマを放出しており、その大部分が地球の大気中に侵入していると言及しています。

The short introduction actually informs the reader that, aside from the three commonly known states of matter
 – solid, liquid and gas – 
there is another state, called plasma. 
この短い導入部分は、実際に読者に、一般に知られている物質の 3 つの状態– 固体、液体、気体 –とは別に、次のことを伝えます、
プラズマと呼ばれる別の状態があります。

It seems amazing that such a statement is felt necessary in 2011 and is possibly another indication of the present state of science and popular scientific knowledge.
2011 年にこのような声明が必要とされているのは驚くべきことであり、これはおそらく科学の現状と一般的な科学的知識を示すもう 1 つの兆候であると思われます。
 
The article then goes on to say that ‘a team of scientists at UCL’s Mullard Space Science Laboratory in Surrey is working to find out more about how the Sun’s plasma behaves and affects our planet. 
さらに記事は、「サリー州にあるUCLのムラード宇宙科学研究所の科学者チームは、太陽のプラズマがどのように挙動し、私たちの地球に影響を与えるのかをさらに解明するために取り組んでいる」と続けている。

Dr. Lucie Green from the team
 – who is revealing her research at this year’s Cheltenham Science Festival – 
explains the properties of plasma.’ 
チームのルーシー・グリーン博士– 今年のチェルトナム科学フェスティバルで彼女の研究を発表する人 –は、プラズマの性質を説明しています。

I would strongly suspect, Dr. Green might save herself a lot of time and effort as well as saving someone else a lot of money if, before proceeding with her investigations, she contacted several notable names associated with long term research into plasma cosmology and (dare I say it?) ELECTRIC UNIVERSE® ideas. 
私は、グリーン博士が、調査を進める前に、プラズマ宇宙論の長期研究に関連する著名な人物数名に連絡を取っていれば、自分自身の多くの時間と労力を節約できるだけでなく、他の誰かに多額のお金を節約できるのではないかと強く疑っています、(あえて言いますか?)エレクトリック・ユニバースのアイデアです。

When one reflects on how much information is already out there
 – much related to the Sun being stored in records held at Kew in London if the information in Stuart Clark’s The Sun Kings is any guide – 
the above apparently important scientific news item from the BBC takes on a new light and might be viewed by some as a genuine cause for worry in knowledgeable scientific circles. 
すでに世に出ている情報がどれだけあるのかを考えてみると、
– スチュアート・クラークの『太陽王』の情報が何らかのガイドになるとすれば、ロンドンのキューに保管されている記録に太陽が保存されていることと大いに関連している –
BBC による上記の明らかに重要な科学ニュース項目は新たな光を帯びており、知識のある科学界では真の懸念材料であると見なす人もいるかもしれません。

Have these people not heard of the work of Birkeland, Langmuir, Alfvén and Peratt, let alone such as Bruce and Juergens? 
これらの人々は、ブルースやジョーガンズ(ヨーゲンス)のような人はもちろん、バークランド、ラングミュア、アルヴェーン、ペラットの作品についても聞いたことがないのでしょうか?

If not, one may only despair even more about the inadequacies of our modern educational system. 
そうでなければ、現代の教育制度の不備にさらに絶望するだけかもしれません。

On the other hand, as indicated above, a true optimist might see the article as indicating a chink appearing in the armour of at least the British scientific establishment.
I wonder?
一方、上で示したように、真の楽観主義者はこの記事を、少なくとも英国の科学界の鎧に現れた亀裂を示していると見るかもしれない。
私は疑問に思う?

Jeremy Dunning-Davies
ジェレミー・ダニング・デイヴィス


Endnotes:
1.    [Image]: /wp/wp-content/uploads/2012/04/jeremy_dunningdavies.jpg
2.    June 6th: http://www.thunderbolts.info/tpod/2011/arch11/110606double.htm
3.    [Image]: /wp/wp-content/uploads/2012/04/Arp-London-2000.jpg
4.    longest running projects: http://einstein.stanford.edu/MISSION/mission1.html
5.    [Image]: /wp/wp-content/uploads/2012/04/Gravity-probe-B.jpg
6.    official NASA web page: http://www.nasa.gov/mission_pages/gpb/
7.    [Image]: /wp/wp-content/uploads/2012/04/Steve-Crothers.jpg
Source URL: https://www.holoscience.com/wp/gravity-probe-b-and-related-matters/
 
Copyright ©2024 holoscience.com | The ELECTRIC UNIVERSE® unless otherwise noted.