Coulomb, a Pioneer for the Theory of the Electric Universe クーロン、電気的宇宙理論の先駆者Reviewed by Mathias Huefner
Coulomb, a Pioneer for the Theory of the Electric Universe
クーロン、電気的宇宙理論の先駆者
Scott Douglass November 18, 2023 - 12:01 amThunderblogs
1
Two forces and an included angle result in a torque perpendicular to the plane of these forces. The torsion balance fixes two forces, so the vibration of the balance beam can be used to measure the deflecting acceleration.
2 つの力と夾角により、これらの力の平面に垂直なトルクが発生します。 ねじりバランスは 2 つの力を固定するため、平均台の振動を使用してたわみ加速度を測定できます。
[Reviewed by Mathias Huefner]
[マティアス・ヒューフナーによるレビュー]
Over the last 35 years, André Koch Torres Assi’s main research topics have been the evaluation of historical texts on the force laws of Newton and Coulomb, Ampère’s force between current elements, and Weber’s law as applied to electromagnetism and gravitation.
過去 35 年間にわたり、アンドレ コッホ トレス アッシの主な研究テーマは、ニュートンとクーロンの力の法則、電流要素間のアンペールの力、電磁気学と重力に適用されるウェーバーの法則に関する歴史文書の評価でした。
He has also published several books on these subjects.
彼はこれらのテーマに関する本も何冊か出版しています。
Now the complete English translation of Coulomb’s major works on torsion, electricity, and magnetism is in seven memoirs.
現在、クーロンのねじり、電気、磁気に関する主な著作の完全な英語翻訳が 7 冊の回想録にまとめられています。
Most, if not all, of these memoirs were reprinted by the French Society of Physics in 1884.
これらの回想録のすべてではないにしても、ほとんどが 1884 年にフランス物理学会によって再版されました。
In the present English translation by Assis and Bucciarelli, each of these historical memoirs is accompanied by explanations and editors’ comments.
アシスとブチャレッリによる現在の英語翻訳では、これらの歴史回想録のそれぞれに説明と編集者のコメントが添えられています。
While the laws of Newton, Coulomb, and Weber are consistent with the principles of conservation of momentum, angular momentum, and energy, and rely on the direct force between interacting particles, the remote-acting field approach was pushed through in the 20th-century ether dispute with support from the Catholic Church.
ニュートン、クーロン、ウェーバーの法則は運動量、角運動量、エネルギー保存則と一致しており、相互作用する粒子間の直接力に依存していますが、遠隔作用場のアプローチは 20 世紀に押し進められました、エーテルは、カトリック教会の支援を得て争う。
It is to Assi’s particular merit that, with his commitment to the historical sources, he has brought back Coulomb’s original materialistic philosophical approach.
アッシの特に優れた点は、歴史的資料へのこだわりにより、クーロンのオリジナルの唯物論的哲学的アプローチを復活させたことです。
Electromagnetic forces and Gravity are determined with the torsion balance.
電磁力と重力は、ねじりバランスで決まります。
The principle of the torsion balance was first used at the end of the 13th century in tower clocks as a clock generator.
トーションバランスの原理は、13 世紀末に時計発生器として塔時計に初めて使用されました。
However, Coulomb was the first to use this principle to measure force.
しかし、クーロンはこの原理を初めて力の測定に使用しました。
Coulomb understood the electric charge of the mobile electrons to be a kind of liquid that spreads freely over the surface of a body.
クーロンは、移動する電子の電荷を、物体の表面に自由に広がる一種の液体であると理解しました。
In his first memoir, we learn that Coulomb was already working on the torsion of the torsion balance from 1777 and used this torsion balance to determine the electrical forces in 1784, nine years before John Michell had completed his torsion balance and Henry Cavendish used it to determine the gravitational force in 1798.
彼の最初の回想録で、クーロンが、すでに 1777 年からトーション バランスのねじれに取り組んでいて次のように述べていることがわかります、そして、ジョン・ミッシェルがねじれ平衡を完成する9年前の1784年に、このねじり平衡を使用して電気力を決定し、ヘンリー・キャベンディッシュは1798年にそれを使用して重力を決定しました。
This is remarkable because Cavendish is said to have claimed that Michell had the idea of building the torsion balance before Coulomb.
キャベンディッシュは、ミシェルがクーロンよりも前にねじれバランスを構築するというアイデアを持っていたと主張していると言われているため、これは注目に値します。
But there are no records that could prove it.
しかし、それを証明できる記録はありません。
A prerequisite for the force measurement is the knowledge that metal threads generate a reaction force during torsion that is proportional to the twisting angle, as reported by Coulomb as early as 1777.
力測定の前提条件は、1777 年にクーロンによって報告されているように、金属糸がねじれ中にねじり角度に比例する反力を生成するという知識です。
Coulomb obtained a force law that, based on Newton’s law, contained the free charges of the bodies instead of the masses and the same indirect proportionality of the square of the distance.
クーロンは、ニュートンの法則に基づいて、質量の代わりに物体の自由電荷と、距離の二乗の同じ間接比例を含む力の法則を取得しました。
Years later, Cavendish, with greater effort, measured the residual bound charge as a gravitational force.
数年後、キャベンディッシュは、より努力して、残留束縛電荷を重力として測定しました。
Today we know that the dipole interaction between the electron shell and the atomic nucleus is responsible for this residual charge, which ensures that matter is held together.
今日、私たちは、電子殻と原子核の間の双極子相互作用がこの残留電荷の原因であり、これによって物質が確実に結合されることがわかっています。
In the second memoir, we learn that the Gravity F, based on the product mass times free fall acceleration, is proportional to the square of the number of oscillations that the simple pendulum makes per unit time, that is, F is proportional to the square of the oscillation frequency f2.
2 番目の回想録では、質量と自由落下加速度の積に基づく重力 F が振動数の 2 乗に比例することを学びます、それは、単振り子の単位時間当たりの振動数、つまり F は発振周波数 f2 の 2 乗に比例します。
In the third memoir, we get a numerical example about the charge loss of the free surface charge.
3 番目の回想録では、自由表面電荷の電荷損失に関する数値例が得られます。
If there is still a residual force, it must be a bound charge, caused by the dipole character of the individual atoms, which we call gravitation and which Cavendish later measured with far more effort on electrically uncharged bodies on the torsion balance.
まだ残留力が存在する場合、それは個々の原子の双極子特性によって引き起こされる束縛電荷に違いありません、これを私たちは重力と呼び、キャベンディッシュは後にねじり天秤上の電気的に帯電していない物体についてはるかに多くの労力をかけて測定しました。
In the fourth memoir, Coulomb examines the substance dependency of the charge and cannot find any difference between the substances.
4 番目の回想録で、クーロンは電荷の物質依存性を調べていますが、物質間の違いは見つかりませんでした。
He concluded that electric charge does not spread in any body by chemical affinity or electrical attraction.
彼は、電荷は化学的親和性や電気的引力によって体内に広がることはないと結論付けました。
In particular, he showed with his torsion balance that electric charge spreads in all conductive bodies according to their shape, without that charge appearing to have any affinity or any electrical attraction to any body, preferably another composed of a different substance.
特に、彼はねじれバランスを用いて、電荷があらゆる物体、できれば異なる物質で構成される別の物体に対して親和性や電気的引力を持たないようであり、電荷がその形状に応じてすべての導電体に広がることを示しました。
This put him at odds with Volta’s contact theory, for it was believed that the electromotive force in Volta’s battery was located at the junction of each metal with the wet conductor in between, which was due to chemical reactions.
これにより、彼はヴォルタの接触理論に矛盾を感じました、というのは、ボルタのバッテリーの起電力は、湿った導体を間に挟んだ各金属の接合点に位置し、これは化学反応によるものであると考えられていたからです。
The double layer was first described by Helmholtz in 1853.
二重層は 1853 年にヘルムホルツによって初めて説明されました。
In the fifth memoir, Coulomb understands electric charge as the mass of an electric liquid and demonstrates its properties.
5 番目の回想録で、クーロンは電荷を電気液体の質量として理解し、そしてその特性を示します。
He proves that free charges do not penetrate the body, but only spread out on the surface.
彼は、自由電荷は体内には浸透せず、表面に広がるだけであることを証明しました。
The sixth memoir deals with the continuation of investigations into the distribution of the electrical fluid between several conducting bodies and the determination of the electrical density at the various points on the surface of these bodies.
6 番目の回想録では、いくつかの導電体間の電気流体の分布と、これらの導電体表面のさまざまな点での電気密度の決定に関する調査の継続について扱っています。
In the seventh memoir, Coulomb experiments with the magnetic moment.
7 番目の回想録で、クーロンは磁気モーメントを実験します。
He calculates the magnetic moment of a magnetized compass needle when the density of the magnetic fluid varies linearly along its length.
彼は、磁性流体の密度がその長さに沿って線形に変化するとき、磁化されたコンパスの針の磁気モーメントを計算しました。
With the detailed description of his torsion balance experiments, Coulomb proved that forces can only be recognized by the movements respectively accelerations that cause them.
クーロンは、ねじれ平衡実験の詳細な説明により、力は、それを引き起こす動きと加速度によってのみ認識できることを証明しました。
They only differ in strength and direction of action.
それらは作用の強さと方向が異なるだけです。
Electric charges have been identified by Coulomb as the cause of forces, hence there can only be one dynamic.
電荷は力の原因としてクーロンによって特定されているため、力学は 1 つだけあり得ます。
But this fact was not universally recognized.
しかし、この事実は広く認識されていませんでした。
Since one has described these dynamics more or less incompletely, sometimes one-dimensional and sometimes two-dimensional but never three-dimensional, as charge or mass points either using classical mechanics or electrodynamics, artificial barriers were built up between mechanics and electrodynamics, which became insurmountable in the idealistic modern physics of the 20th century.
これらの力学は多かれ少なかれ不完全であり、古典力学または電気力学のいずれかを使用して電荷または質点として、時には一次元、時には二次元であるが決して三次元では記述されなかったため、力学と電気力学の間に人工の障壁が構築され、 20世紀の理想主義的な現代物理学では克服できません。